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a b s t r a c t

Robust face recognition under uncontrolled illumination conditions is one of the key challenges for real-
time face recognition systems. Weber-face (WF) is an illumination insensitive face representation based
on Weber' law. In this letter, we develop a generalized Weber-face (GWF) which extracts the statistics of
multi-scale information from face images. By assigning different weights to the inner-ground and outer-
ground we further develop a weighted GWF (wGWF) version. Based on our experiments on the extended
Yale-B and FERET face database we show that the proposed methods are robust to illumination variations
and can obtain promising performance comparable with existing approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

As one of the key biometric technologies, automatic face
recognition has a range of applications in the field of information
security, smart cards, entertainment, law enforcement and sur-
veillance [1]. Though pleasant results have been achieved during
the last decade, there are still many challenges in robust face
recognition under uncontrolled conditions such as facial expres-
sion, age, and viewpoint. These variations in the illumination
conditions are frequent and issues demanded to be solved [2,3].

In recent years, a number of face recognition approaches with
illumination invariant have been proposed. They could be devided
into four main categories. The first category handles the illumina-
tion normalization problem using traditional image processing
methods such as Histogram Equalization (HE) [4], Gamma Intensity
Correction [5], and Homomorphic filtering approach [6]. The second
category attempts to learn a face model of the possible illumination
variations from the illumination samples. Batur and Hayes [7]

proposed a segmented linear subspace model for illumination
robust face recognition. Georghiades et al. [8] made use of Illumina-
tion Cone and Zhang and Samaras [9] used the spherical harmonics
representation for face recognition under variable lightings. This
category requires a lot of training images and is not practical for
applications. The third category attempts to find illumination
invariant features like transformation domain features [10], local
binary pattern (LBP) [11], local ternary Patterns (LTP) [12], etc. The
fourth category tries to find illumination invariant representation of
the face image. Gradientface (GF) [13], single scale Retinex (SSR)
approach [14] and self-quotient image (SQI) [15] are representatives
of this category. However, the recognition experiment on a face
database with illumination variations shows that none of above is a
sufficient illumination-invariant representation [16].

In [17], we proposed a Weber-face (WF) approach, an illumination
insensitive representation based on Weber's law. However, WF con-
siders only the center pixel and its eight nearest pixels. To overcome
this weakness, this letter introduces a generalized Weber-face (GWF)
and a weighted GWF (wGWF) which extend the WF from pixel-level
to patch-level and from single-scale to multi-scale. GWF has the
following characteristics: firstly, patch-based WF is a generalized
version which can extract multi-scale information of face images;
secondly, patch-based WF allows for the use of statistics, such as
mean, variance and median for improving the noise robustness;
thirdly, when the statistics satisfies some condition, patch-based WF
can be proved as an illumination insensitive representation. These
characteristics of patch-based WF can help to improve illumination-
robust face recognition performance.
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2. Weber's law and Weber-face

Weber's law reveals that the ratio of the perceptual increment
threshold to the background intensity is a constant and it can be
expressed as

ΔI
I
¼ k; ð1Þ

where I represents the background intensity, ΔI represents the
perceptual increment threshold, and k is the Weber fraction.
Weber's law reveals that, when the background intensity is neither
strong nor weak, the perceptual increment changes with the
background intensity, not in absolute term.

In [17], we proposed an illumination insensitive representation
called “Weber-face”. WF is defined by

WFðx; yÞ ¼ arctan α∑
iAA

∑
jAA

f ðx; yÞ� f ðx� iΔx; y� jΔyÞ
f ðx; yÞ

 !
; ð2Þ

in which A¼ f�1;0;1g, and f ðx; yÞ is the intensity value of the pixel
at location (x,y). The arctangent function is a normalization
function and the parameter α is a weight coefficient for adjusting
the relativity between the intensity difference and current center
pixel. WF is justified to be an illumination insensitive representa-
tion of the original face image based on Lambertian reflectance
model [17], which can be expressed as

f ðx; yÞ ¼ rðx; yÞiðx; yÞ; ð3Þ
where rðx; yÞ is its reflectance which depends on characteristics of
the face surface and iðx; yÞ denotes its illumination that is generally
characterized by slow spatial variations.

3. Proposed methods

3.1. Generalized Weber-face

In fact, we can rewrite the core component of WF as

∑
iAA

∑
jAA

f ðx; yÞ� f ðx� iΔx; y� jΔyÞ
f ðx; yÞ ¼ p

f ðx; yÞ�μf ðx;yÞ
f ðx; yÞ ; ð4Þ

inwhich p¼8 is the number of neighbor pixels around location (x,y)
and μf ðx;yÞ is the mean of intensity values of these p neighbor pixels
around location (x,y). The ratio ðf ðx; yÞ�μf ðx; yÞÞ=f ðx; yÞ reveals the
relative change of Weber's law. However, WF considers only the
pixel at the location (x,y) and its eight nearest pixels. Here, we
generalize the WF into a patch-based version called the generalized
Weber-face (GWF).

We define the inner-ground and the outer-ground within a
template as shown in Fig. 1. The GWF is defined by

GWFðx; yÞ ¼ arctan α
Sðf Iðx; yÞÞ�Sðf Oðx; yÞÞ

Sðf Iðx; yÞÞ

� �
; ð5Þ

where O and I are sets of outer-ground and inner-ground coordinates
surrounding coordinate (x,y). f Oðx; yÞ are the pixel values in outer-
ground of coordinate (x,y) and f Iðx; yÞ are the pixel values in inner-

ground of coordinate (x,y). SðϕÞ is a statistics of ϕ that satisfies
SðkϕÞ ¼ kSðϕÞ when k is a constant value. Like the Weber-face, the
fraction is unbounded, therefore we also adopt an arctangent function
to make normalization and α is a parameter for magnifying or
shrinking the ratio between the difference of the statistic of the
outer-ground and inner-ground pixels and that of the inner-ground
pixels.

Next, we prove that GWF is an illumination insensitive repre-
sentation of the image f based on the Lambertian reflectance.
Similar to Eq. (3), we have

f Oðx; yÞ ¼ rOðx; yÞiOðx; yÞ; ð6Þ
and

f Iðx; yÞ ¼ rIðx; yÞiIðx; yÞ: ð7Þ
in which the illumination component iðx; yÞ varies slowly in local
areas except for the shadow boundaries, i.e.,

iOðx; yÞ � iðx; yÞ; iIðx; yÞ � iðx; yÞ: ð8Þ
By substituting Eqs. (6)–(8) into Eq. (5), we have

GWFðx; yÞ

¼ arctan α
SðrIðx; yÞiIðx; yÞÞ�SðrOðx; yÞiOðx; yÞÞ

SðrIðx; yÞiIðx; yÞÞ

� �

� arctan α
SðrIðx; yÞiðx; yÞÞ�SðrOðx; yÞiðx; yÞÞ

SðrIðx; yÞiðx; yÞÞ

� �
:

Due to SðkϕÞ ¼ kSðϕÞ, GWFðx; yÞ can be represented as

GWFðx; yÞ

¼ arctan α
iðx; yÞSðrIðx; yÞÞ� iðx; yÞSðrOðx; yÞÞ

iðx; yÞSðrIðx; yÞÞ

� �

¼ arctan α
SðrIðx; yÞÞ�SðrOðx; yÞÞ

SðrIðx; yÞÞ

� �
:

From the above equation, we can observe that GWFðx; yÞ is an
illumination insensitive representation of the original face image
f ðx; yÞ similar to the WF. This is because GWFðx; yÞ depends only on
the reflectance component r and has nothing to do with the
illumination component i.

3.2. Weighted GWF

In Eq. (5), Sðf Iðx; yÞÞ and Sðf Oðx; yÞÞ have the same weight α. In fact,
we can adopt different weights to offer users the more flexibility in
real applications. Therefore we further propose a weighted version of
the GWF, named as the weighted GWF (wGWF), i.e.,

wGWFðx; yÞ ¼ arctan
αSðf Iðx; yÞÞ�βSðf Oðx; yÞÞ

Sðf Iðx; yÞÞ

� �
; ð9Þ

where a separate weight parameter β is added. Experiments later in
this paper will show that the wGWF can obtain better results
compared with the WF and GWF.

3.3. Implementation

As mentioned in [17], the Gaussian filter can mitigate the side-
effect of shadow boundaries, therefore we implement GWF and
wGWF after the Gaussian filter as in [17]. Table 1 summarizes the
implementation of the wGWF. In our experiments, the mean is
adopted as the statistics.1 Given the size of template is M�M and
the size of inner-ground is N�N, Sðf 0Iðx; yÞÞ and Sðf 0Oðx; yÞÞ are

Fig. 1. The relationship between the WF and the GWF, where the size of GWF
template is 7�7 and that of inner-ground is 3�3.

1 It is not limited to the use of the mean as the statistic, and other statistic, such
as the median and variance, can also be used.
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computed as

Sðf 0Iðx; yÞÞ ¼
1

N2 ∑
ðx;yÞA I

f ðx; yÞ; ð10Þ

and

Sðf 0Oðx; yÞÞ ¼
1

M2�N2 ∑
ðx;yÞA I

f ðx; yÞ: ð11Þ

It is easy to find Eqs. (10) and (11) revert to the defined in Eq. (2)
Weber-face when M¼3 and N¼1.

4. Experiments

We carried out our experiments on the extended Yale-B face
database and the FERET face database to illustrate the effectiveness
of the GWF and wGWF.

The extended Yale face database B is an updated version of the Yale
face dataset B. It contains 38 subjects under 9 poses and 64 illumina-
tion conditions. In both cases the images are divided into five subsets
according to the angle between the light source direction and the
central camera axis. The FERET database contains the gallery set Fa
(1196 images from 1196 subjects) and four probe sets among which
subset Fc (under variations in illumination, 194 images from 194
subjects). In our experiments, all face images from the extended Yale-B
database are properly aligned, cropped and resized to 120�120, and
the FERET database 128�128. The standard deviation s of the
Gaussian filter in the WF, GWF and wGWF is 1.5 (Fig. 2).

In the experiments, we preprocessed the images with different
methods and used LBP operator on the preprocessed images as the
feature and took the nearest histogram intersection distance as the
classifier rule.

Effect of sizes of the inner-ground and the outer-ground. Fig. 3
(a) shows the recognition rates of different sizes of inner-ground
and outer-ground in the extended Yale-B subset 5 using the method of
wGWF. We can find that the recognition rate does not reach the
highest when the inner-scale and the outer-scale are both 1, i.e., M¼3
and N¼1, which is equivalent to theWeber-face. A slightly larger scale
may extract more discriminative information and eliminate more
noise, and thus achieve better performance. However, the scale cannot
be too large. The illumination component in too large scale would not
be approximately equal in Eq. (8) so that it is difficult to guarantee the
illumination insensitive representation of the GWF. According to the
above results, we obtain a relatively higher recognition rate (95.66% for
the subset 5) when the inner-scale is 3 and the outer-scale is 2, i.e.,
M¼7 and N¼3, which are the parameter settings in the following
experiments.

Effect of the weights of wGWF. Fig. 3(b) illustrates the recogni-
tion rates for various weights in extended Yale-B subset 5 with the
wGWF. The recognition rate is affected by the weights α and β.
Eq. (9) can be reformulated as

wGWFðx; yÞ ¼ arctan α
Sðf Iðx; yÞÞ�β

αSðf Oðx; yÞÞ
Sðf Iðx; yÞÞ

 !
; ð12Þ

According to Eq. (12), α is the parameter to adjust the normal-
ization with the arctan function as mentioned in [17]. The ratio
β=α is for adjusting the statistic between the outer-ground and the
inner-ground because of the various number of pixels in the outer-
ground and the inner-ground. Better results are generally obtained
when the ratio β=α is slightly more than 1.

Effect of the standard deviation s in the Gaussian filter. The standard
deviation s can be viewed as a measure of the Gaussian filter. The
Gaussian filter is adopted in front of the GWF method with the
purpose of noise removal. Therefore, the standard deviation s depends
mainly on the noise in the face image. From the point of the view of
frequency domain, the Gaussian filter removes the noise in high
frequency and the GWF method decreases the influence of different
illumination components in low frequency. The standard deviation s
in the Gaussian filter decides the bandwidth. Like Laplacian of the
Gaussian filter, larger s will help to eliminate the noise in high
frequency. However, s should not be too large in case too much high-
frequency face information is weakened at the same time. Experi-
mental results demonstrate that setting s¼ 1:5 can achieve higher
recognition rate.

Fig. 4 shows the faces for different images of the same person
using different methods, where the first column “ORI” shows the
original images without any preprocessing under different illumi-
nation conditions. Column “HE” shows the results of Histogram
Equalization (HE) [4]. Column “LoG” shows the results of the
Laplacian of Gaussian where the standard deviation s is 1.5.
Column “PP” represents the preprocessing results of a state-of-
the-art method [18]. Column “WF” shows the results of the Weber-

Table 1
Implementation of wGWF.

Input: A face image f
Output: The Weighted GWF (wGWF) of f
1. Smoothen f with a Gaussian filter:

f 0 ¼ fngðx; y;sÞ;
where n is a convolution operator and

Gaussian kernel function gðx; y;sÞ ¼ 1
2πs2 exp �x2þy2

2s2

� �
,

2. Process f 0 with wGWF operator:
(1) Calculate the statistics of inner-ground of f 0:

Sðf 0Iðx; yÞÞ using Eq: ð10Þ:
2) Calculate the statistics of outer-ground of f 0:

Sðf 0Oðx; yÞÞ using Eq: ð11Þ:
(3) Calculate wGWF:

wGWFðx; yÞ ¼ arctan
αSðf 0Iðx; yÞÞ�βSðf 0Oðx; yÞÞ

Sðf 0Iðx; yÞÞ

� �
:

Fig. 2. Illustration of the computation of wGWF, while taking the mean as the statistic.

Y. Wu et al. / Neurocomputing 136 (2014) 262–267264



face [17]. Column “GWF” and “wGWF” are the results of our
proposed generalized Weber-face and weighted GWF respectively.
We adjusted the parameters of each method carefully according to

the original paper, where α¼ 4 in the Weber-face and α¼ 16 in
the GWF ensure the equivalence between the Weber-face and the
GWF when M¼3 and N¼1. We can find that the results of the

Fig. 3. Breakdown of recognition rates on the Subset 5 in the Extended Yale-B for the various scales and weights using the wGWF. (a) The various scales where
inner-scale¼N and outer-scale¼(M�N)/2; (b) the various weights when M¼7 and N¼3.

Fig. 4. The faces for different images of the same person processed by different methods.
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GWF and wGWF methods are insensitive to illumination variation,
compared with the method “HE” and “LoG”. The images processed
by the GWF have better contrast between significant parts of the
face features and the rest with less discriminative information.
Moreover, wGWF eliminates most of the undiscriminating parts
when selecting the appropriate weights.

Table 2 shows the recognition rates in the extended Yale-B
database using different methods. The wGWF performs better than
GWF, and achieves 20.08%, 19.77%, 2.3%, 4.04%, and 1.39% higher
average recognition rate than the average rates of the first five
methods. Both the GWF and wGWF have better performance than
other methods in each subset. Table 3 shows the recognition rates
on the FERET-Fc database. Both the GWF and wGWF achieve
excellent recognition performance.

5. Conclusion

The proposed GWF and wGWF are generalized multi-scale
versions of the Weber-face. They have been proved to be illumina-
tion insensitive representations under the Lambertian reflectance
model similar to Weber-face. They can extract multi-scale infor-
mation and obtain more discriminative information with larger
contrast between significant parts of face feature and the undis-
criminating parts. Experimental results on extended Yale-B and
FERET database have demonstrated that our proposed GWF and
wGWF show better performance than several other approaches.
This provides new insights into the role of robust preprocess-
ing method under uncontrolled illumination conditions for face
recognition.
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